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ABSTRACT

There are procedures and methods for verification of coding algebra and for validations
of models and calculations that are in use in the aerospace computational fluid dynamics
(CFD) community.  These methods would be efficacious if used by the glacier dynamics
modeling community.  This paper is a presentation of some of those methods, and how
they might be applied to uncertainty management supporting code verification and model
validation for glacier dynamics.  The similarities and differences between their use in
CFD analysis and the proposed application of these methods to glacier modeling are
discussed.  After establishing sources of uncertainty and methods for code verification,
the paper looks at a representative sampling of verification and validation efforts that are
underway in the glacier modeling community, and establishes a context for these within
an overall solution quality assessment.  Finally, a vision of a new information
architecture and interactive scientific interface is introduced and advocated.  By example,
this Integrated Science Exploration Environment is proposed for exploring and managing
sources of uncertainty in glacier modeling codes and methods, and for supporting
scientific numerical exploration and verification.  The details, use, and envisioned
functionality of this Environment are described.  Such an architecture, that manages
scientific numerical experiments and data analysis, would promote the exploration and
publishing of error definition and evolution as an integral part of the computational flow
physics results. Then, those results could ideally be presented concurrently in the
scientific literature, facilitating confidence  modeling results.
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INTRODUCTION

Verification of numerical glacier models generally intends to answer the question
of whether the governing equations were solved correctly.  That is, does one believe that
the process of solving a model of discretized equations plus their boundary conditions,
initial conditions, any input data, and conceptual modeling assumptions has yielded a
converged solution that is correct within bounded numerical error.  Verification arises by
assessing numerical accuracy against expectations of the theoretical model, and by strict
uncertainty modeling and analysis of the model parameters, limits, and numerical
convergence histories of the code over specified grids.  Usually, the problem statement
itself should indicate what counts as an acceptable level of numerical accuracy and
solution stability by defining the purpose and fidelity of the analysis.  Accuracy is
measured against the scientists’ codified expectations from this problem statement.
Expectations arise from a variety of sources:  field observations and data, satellite sensor
data, and laboratory experiments, each of which are incomplete datasets that approximate
reality; benchmark analytic solutions intended to exercise the code; code performance
across a variety of grids; parameter resolution studies and sensitivity-uncertainty
analyses; and the matching of results to previously verified solutions and methods on
“similar” computational problems within a specified tolerance.  The model’s ability to
match expectations can constitute a verification of that model as long as the sources of
numerical error are understood and can be accounted for in terms of technical analyses.
Such analyses includes identification of both computational and flow physics
uncertainties, formal discretization order and accuracy, solution stability during grid
convergence studies, and general robustness of the numerical method.

However, there exists a distinction between verification of a code or a model (the
numerical accuracy) and validation of that model (the correct conceptual problem
statement); and uncertainty and errors can arise from both sources.  Here again, the
problem statement itself will dictate what counts as a solution by projecting expected
results or solution behavior.  Consider the process of recovery from mismatched results.
If data and model results do not agree:  either, one decides that the model is accurate and
then analyzes why the data may be faulty, incomplete, inconsistent, or not fully
applicable (data errors); or, one decides that the data are accurate, and hence the model
results must be numerically wrong.  If the model is wrong, the problem may either be
improper discretization or non-convergence over the chosen grid (verification errors) and
the numerical scheme must be reformulated; or the model may be an inaccurate
representation of the physical situation of interest (validation errors).  In that case, the
equation results will never match the observed data, and the model itself must be
reformulated to capture the correct physics.  We may be solving the equations correctly,
but we are solving the wrong set of equations.  Note that an incomplete representation of
the physics is not by itself a validation error or a wrong set of equations.  It may well be
an intentional model simplification or approximation in order to isolate and study certain
processes or to maintain numerical tractability.  But, an incomplete representation will
induce uncertainties.

Validation establishes the context and content of the physical problem being
modeled and dictates levels of acceptability and uncertainty; verification establishes the
numerical accuracy of the codes and mathematical constructs through rigorous methods.
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Verification and validation of codes and models are thus distinct processes.  However,
since the overall goals are to establish the credibility and solution quality of the numerical
model, to match the conceptual model to reality, and to identify and manage the
uncertainties, these two processes are frequently employed together to these ends.  In
fact, the two processes may be intertwined, and together they create credibility,
confidence in solution quality, and insight and intuition for further exploration.

In 1994, Oreskes and others published an article in Science entitled “Verification,
Validation, and Confirmation of Numerical Models in the Earth Sciences.”  In this paper
they argue, from a philosophical point of view, that verification and validation of
numerical models in the earth sciences is impossible due to the fact that natural systems
are not closed, so we can only know about them incompletely and by approximation.
Although surfacing significant philosophical issues for verification, validation and truth
in numerical models, unfortunately their arguments to support this thesis fail frequently
due to conflation and misuse of the very terms and concepts the paper is intending to
elucidate.  They correctly argue that numerical accuracy of the mathematical components
of a model can be verified.  They also hold that the models that use such mathematical
constructs (the algorithms and code) represent descriptions of systems that are not closed,
and therefore use input parameters and fields that are not and cannot be completely
known.  But this is not a successful argument against the possibility of model
verification; rather, it is an issue of whether the application of a numerical model
appropriately represents the problem being studied.  Hence, this is a problem in model
validation or model legitimacy, not one in verification.

In terms of model validation, Oreskes and others (1994) discuss establishing the
“legitimacy” of the model as akin to validation.  As far as it goes, this representation is
accurate; but they claim further that a model that is internally consistent and evinces no
detectable flaw can be considered as valid.  This is a necessary, but not sufficient,
condition for validation of models, and it derives from the philosophical usage of
establishing valid logical arguments, not from practices in computational physics.  Hence,
once again their arguments are using terms from the philosophical literature that carry
different technical meaning and reference from those same terms in the scientific
literature.  Such misuse is clear when they say that it is “misleading to suggest that a
model is an accurate representation of physical reality” (Oreskes, et al., p.642).  In point
of fact, the intent of the scientific model is to represent reality or a restricted and defined
simplification of physical processes, and validation is specifically the process that
demonstrates the degree to which the conceptual model (the mathematical representation)
actually maps to reality.  The fact that a model is an approximation to reality does not
mean such representation is “not even a theoretical possibility” (ibid, p.642) due to
incompleteness of the datasets.  Rather, such analysis and mapping dictates exactly what
validation of the model means, and what the limits of applicability of the model are.
Establishing validation means establishing the degree to which the conceptual model is
even supposed to encompass physical reality.

Verification, validation, and recognition and control of uncertainties are precisely
the way the scientific community deals directly with the acknowledged problem of open
systems and incomplete data at a variety of scales.  There are certainly philosophical
issues to be addressed in verification, validation, and uncertainty management for
dynamical systems modeling, such as choice of closure of equations in analysis and
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representation in simplified or reduced models.  But numerical accuracy and verification
of models is not about philosophical truth or common usage of terms.  Credibility of
simulations is established by recognizing computational and flow physics uncertainties
and by quantifying them.  The scientific community properly deals with incompleteness
and openness of natural systems through quantification of model limits and ranges of
applicability, through model representation alternatives, through specific numerical
accuracy tests, through analyzing the scale of coupling of various linked flow processes,
through sensitivity and uncertainty analysis, and so on.  Once “natural philosophy”
became rigorous and computational, then verification, validation, and uncertainty
management in science codes and science strategy scenarios is certainly not only possible
but necessary.  And whereas understanding numerical accuracy of codes is important for
credibility, understanding model limitations is essential for model applicability and use in
science problems.

The aerospace computational fluid dynamics (CFD) community has been engaged
in substantial efforts at defining and quantifying uncertainty, and developing verification,
validation, and code calibration processes since the mid-1980s (Mehta, 1991, 1998;
Roache, 1997, 1998).  This paper presents some of these methods, and clarifies the
similarities and differences between their use in CFD analysis and proposed application
of these methods to glacier modeling.  First, the sources of uncertainty and errors are
discussed.  Then appropriate procedures for validation and verification are presented.
Next, the paper looks at a representative sampling of verification and validation efforts
that are underway in the glacier modeling community, and establishes a context for these
papers within an overall solution quality assessment.  Finally, an information architecture
is introduced and advocated.  This Integrated Science Exploration Environment (ISEE) is
proposed for supporting scientific numerical exploration and for exploring and managing
sources of uncertainty, whether from dataset, verification, or validation errors.  The
details and functionality of this Environment are described based on modifications of a
system already developed for CFD modeling and analysis.

SOURCES OF UNCERTAINTY IN MODELS AND CODES

We consider first the sources of uncertainty and errors during modeling and
representation of continuum physics by discrete coding.  Uncertainty refers to a perceived
lack of reliability or confidence in the results of a simulation of some physical process.
Uncertainty specifically refers to errors, not to mistakes.  Errors are expected to arise
simply from the fact that the physical process of interest is being modeled by continuum
partial differential equations (PDEs) and their boundary conditions, and from the fact that
the continuum model is then re-represented in discrete mathematics for machine
implementation.  Identifying and quantifying uncertainties, and understanding their
origins and propagation through both the conceptual and numerical models and codes, is
done to establish credibility in these representations of reality.

It is very important to separate sources of uncertainties that arise due to
representation of the physical process as a mathematical model from those that arise due
to the discretization of the math model and its operation by the computer.  Consider some
examples.  Two sources of error in a piece of code may interact or cancel each other at
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some scales and resolutions, thereby hiding real features; or, conversely, non-physical
behavior may arise in the numerical process that is then masked by error interaction.
Alternatively, changes that are made for computational convenience to a boundary
condition in the code must be evaluated as to whether this is still a reasonable boundary
condition in the original continuum model, or else non-physical simulations may result
even though the numerical model converges.  Such interactions and changes must be
tracked and isolated so that actual uncertainties can be measured.  The desire to do this
has led to separating the model validation process from the code verification process.  So
too in glacier modeling, one must be separately concerned with the uncertainties that
arise from the flow physics representations, with those strictly due to the numerical
scheme, and with the propagation of errors that are associated with local features in
model or code into more regional or global parts of the model.  Local uncertainties are
frequently accessible to analysis by algorithmic methods.  But as such uncertainties
propagate through the model evolution, or impact upstream or downstream of their
source, the tracking of such uncertainties becomes a problem in model interpretation that
is frequently not amenable to algorithmic analysis.  Strategies to explore impacts and
propagation of errors must be worked out based on target results and variations of these.

In this section, the sources of errors and uncertainties that arise in glacier models
and their computational flow codes are discussed.  The basis for this discussion and
categorization of features and errors is drawn from the development of uncertainty
identification and management that has been occurring recently in the CFD community
(Mehta, 1991, 1998; Oberkampf and Blottner, 1998; Roache, 1997, 1998).  Clearly, both
in use and focus, CFD for aerospace development and design is rather different from that
of fluid dynamics for glacier and ice sheet modeling.  However, the lessons learned in the
CFD community can be mapped into expectations and guidance for development of
verification and validation scenarios by the glacier modeling community.  Furthermore,
the structure of uncertainty analysis between aerodynamics and glacier modeling can be
remarkably similar.  Both disciplines start their analysis from the Navier-Stokes
equations for momentum balance; they both include auxiliary process models that
become proxy for and replace simple boundary conditions; and the failing of theorems
about equivalence between continuum and discrete models arises due to the nonlinearity
of the PDEs rather than just presence or absence of various terms like inertial or viscous
relations that normally distinguish glacier flow from aerodynamic analysis.

Sources of Modeling Uncertainty
Uncertainties in creating a mathematical model of a physical process are caused

by inaccuracies, approximations, and assumptions in the mathematical representation.
These errors are completely distinct from numerical errors that will be discussed later.
Such inaccuracies may be intentional, in that we know an approximation to the physics
has been made to ensure mathematical tractability, or from the desire to isolate certain
processes.  However, the extent of the inaccuracies, or their impact on model evolution
and representation, may not be fully anticipated.  Other inaccuracies arise unintentionally
due to our insufficiency in understanding the details and interaction scales of the
processes being modeled.  In any case, these inaccuracies can be categorized as to source
if not effect or extent.  Part of exploration of these uncertainties and their propagation is
to develop better scientific understanding, intuition for future refinements, and for
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general model validation through comparison to data from experiments (physical or
computational), from field work on glaciers or de-glaciated beds, and from satellite
sensors.

Consider first the uncertainties that arise from the PDEs of fluid dynamics.  There
is often not a complete understanding of the phenomena or processes being modeled -- in
fact, this is usually the reason for doing the simulation.  Hence, the mathematical
representations will be incomplete.  The modeling parameters may be incompletely
known or be intentionally averaged.  There may be a lack of field data for describing
expected ranges of these parameters or other dependent variables.  In short, the math
model is generally a simplified picture of reality.  The uncertainties related to this
simplification depend heavily on whether the mathematical representation has captured
the dominant physics at the right scale for the process being investigated.  To guarantee
control or understanding of the uncertainties, frequently the PDEs are formulated so that
the simplest appropriate forms of the equations can be used.  Then the equations are
extended to more complicated flow situations in a reasoned manner.  But as the model is
extended, more accurate information about the processes is required, and hence more
uncertainty may be introduced.  Errors occur at each level of approximation.

The model may be written to isolate features or processes of interest, and these
are then uncoupled from real system behavior.  The purpose of isolation may be to better
understand the process or simply that it is not feasible to model everything
simultaneously.  However, such isolation implicitly assumes that either there is no
influence between the process and the rest of the system, or that the influence is known
and understood.  The degree to which this is untrue introduces uncertainties into the PDE
model and its final results.

Oberkampf and Blottner (1998) describe a chain of increasing complexity of flow
problems in which more detailed physics is added during CFD analysis.  Usually the
aerodynamicist starts with inviscid equations.  One then progresses to full viscous
Navier-Stokes equations using the inviscid results as guidance, although this can give
misleading results.  A variety of increasing approximations and complexity directions can
follow.  One can analyze mixed species flows.  One can include turbulence models for
recognizing and simulating particular features in certain flow configurations, namely
types of shock structures or vortex cores.  Alternatively, one might add or couple together
specific physical phenomena with the general flow field, or perhaps use transition models
that cross both laminar and unsteady flow conditions through changing temporal and
spatial characteristics.

In glacier modeling, a similar chain of analysis might be as follows.  Start as
normal with restricted viscous flow, but incorporating complicated rheology.  Then one
might add thermodynamic models.  The glacier “mixed species” equivalent could be
modeling entrained debris at the ice-bedrock interface or till deposition models coupled
to the ice flow.  If a true coupling of ice flow and basal processes is modeled, this
requires additional algebraic relations, or perhaps new PDEs rather than just new
specified boundary conditions (Blatter and others, 1998).  Next one might envision
developing models for transient phenomena.  For example, one model might assess the
transient flow characteristics that arise as a glacier evolves from one steady state to
another.  A second model might study the growth to finite amplitudes of secondary flow
structures in the ice.  These would require solving additional PDEs.  Then, rather than
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using averaging methods or scaling of governing equations, one might couple these
specific transient phenomena into the general flow field.  Increasing complexity leads to
increasing understanding, but also to increasing uncertainty in the PDEs that must be
evaluated.

Modeling may inadvertently introduce extraneous physical (or computational)
phenomena and features due to coupling through perturbations; or it may prevent or
constrain real flow conditions because of simplifying assumptions.  For example, a 2D
representation automatically eliminates the possibility of modeling 3D features like
vortices or even simple transverse flow.  That simplification is understood and frequently
made intentionally.  But restricting flow to two dimensions also introduces extraneous
constraints and features at boundaries unless complicated flux boundary conditions are
created to prevent over-constraining the flow that could introduce such non-physical
instabilities or discontinuities.  The ramifications of such assumptions must be thoroughly
explored and understood in order to maintain credibility of the resulting flow solutions.

Uncertainties can arise separately in the auxiliary physical models as well, some
of which themselves may be PDEs.  Generally, “auxiliary physical models” refers to
equations needed to close the momentum balance equations so that a solution is possible.
In simplified CFD, this usually means employing equations of state approximations and
thermodynamic parameters or relations.  As the CFD equations increase in complexity,
the auxiliary relations include transport properties and constitutive relations between
stress and strain-rate in order to model eddy viscosity.  The flow may also be coupled to
structural bending due to pressure loads over a wing.  Also, new turbulence models are
used whose ranges of applicability must be determined by experimental results (usually
in wind tunnels) to resolve rapidly varying flow conditions.

In the glacier modeling analog, our auxiliary relations are the constitutive
relations and flow laws from which effective viscosity profiles are derived.  We may
include thermodynamic relations and heat flux models that require additional energy
balance equations coupled to the flow equations.  An asymmetry occurs in glacier
modeling in that the equations are initially written requiring stress tensor derivatives.
Laboratory tests on ice samples yield strain-rate data, and field measurements on glaciers
yield velocity and strain-rate data.  Viscosity is derived by modeling this data with flow
law assumptions, and the governing equations are then written either in terms of
velocities, viscosities, and their derivatives, or in terms of velocities and strain-rates with
viscosity becoming an explicit function of strain-rates through the assumed flow law.
Alternatively, the equations may also be written entirely in terms of ice thickness and
fluxes with the flow law as an auxiliary constraint.  Thus, these auxiliary relations and
transformations lead to highly nonlinear PDEs even for simple flow fields.

Finally, sources of modeling uncertainty arise from the representation of
boundary conditions (BCs).  Surface conditions that specify velocity and temperature
(e.g., Dirichlet conditions) present no problems, but any BC that specifies more than that
requires information from the interior domain of the flow.  Generally the flow solution
must be found, then that solution is used in a separate PDE as a consistency condition,
and this new equation is solved.  Selecting the correct matching condition or consistency
relation is necessary to control the uncertainty in the model.  Additionally, BCs along a
glacier bed may require boundary discontinuities in velocity or stress, accurate or scaled
representations of bedrock geometry, and analysis of the fidelity of the computation over
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that geometry (see, for example, Colinge and Blatter, (1998) and Blatter and others
(1998), for problems identified and the impact at the numerical level).  One obvious
discontinuity comes from representing the flow field at glacier margins, and uncertainties
arise related to selecting an adequate resolution of conditions at these moving or fixed
margins.   Mathematical singularities may be handled in the continuum mathematics; but
with the ultimate goal of deriving numerical simulations, such singularities may be very
difficult to program numerically.  Hence, the continuum PDEs and their discrete
representations will turn out to be different problems.

Uncertainty in free surface conditions generally arises from the problem of
selecting the correct matching conditions to apply based on the phenomena to be
analyzed.  For example, a simple claim of continuity or vanishing normal velocity or
shear stress at a deformed surface may not be sufficient if actual mass transport is
anticipated across that surface to induce flow perturbations from an accumulation event.
Interface conditions are equally important; for example, one may decide that heat flow is
continuous across the interface but perhaps a simple match of temperatures will be
sufficient for the case at hand.  Numerical modeling schemes may also introduce layers
of interfaces across which constraints against discontinuities are imposed.

The most difficult conditions are probably the open BCs.  These include
inflow/outflow conditions in CFD, and include flux boundary conditions in glacier
modeling.  Examples would be specifying coupling or transition conditions from an ice
divide into channelized flow, ice sheet coupling to ice streams (Marshall and Clarke,
1996), or modeling till deformation coupled with entrainment or deposition from the ice
flow field.  The issue is how to specify them while maintaining control on uncertainty,
and often where to apply them (at infinity margins or near features of interest, like ice
rises).  If the PDE is over-constrained by these conditions, the solution may exhibit
instabilities that contaminate the actual flow solution; if the flux conditions are not
coupled properly, the resulting solution is spurious.

The overall lesson is that developing the mathematical model requires
identification and management of uncertainties.  These uncertainties are what must be
expunged, mitigated, or accommodated during the model validation process, whether
results are compared with lab or field data or with previously benchmarked flow
solutions that act as test cases for validation.

Sources of Code and Numerical Uncertainty
Code and numerical uncertainty leads directly to issues of verification as opposed

to validation.  Generally, all sources of errors in codes and calculations arise either from
questions of equivalence of the discrete computational model to the original
mathematical PDE model, or from questions of the numerical accuracy of the
discretization scheme and its implementation.  In this section, these two sources of
uncertainty or error are examined.

Roache (1998) outlines five sources of error in code development and use.  Code
authors can make errors during code generation and while developing code use
instructions.  Code users can make errors in their problem set-up, in their definition and
coding of benchmark cases (possibly analytic) for use in results comparison, and in their
interpretation of code results.  Hopefully, the code verification process would remove the
error source derived from code and instruction development.  Code use errors however
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may arise anytime a (verified) code is applied to a new problem statement.  When a code
is applied to a new problem, the fact that the code has been previously verified does not
give any estimate of its accuracy for this new problem.  Systematic grid convergence
studies are needed to verify the code on the new problem domain, and this is separate
from the activity of validation that the PDEs are appropriate for the new problem.

Consider the problem of code and instruction generation.  The solution procedure
used in an algorithm or code is an approximation of the original PDEs.  Errors arise in
coding due to the discretization scheme selected that is intended to map the PDE model
into a finite difference, finite element, or finite volume representation.  Thus, the PDEs,
the auxiliary equations, and the boundary conditions are all discretized to some order
which is defined by a truncation error of the series solution.  The truncation error allows
one to define the order of accuracy of the solution; the discretization error gives the
numerical error of the calculation due to the fact that the solution is sought over a finite
number of grid points.  In addition to discretization errors, there can also be errors in the
computed solution of the set of discretized equations representing the PDEs, and these are
not necessarily related to grid convergence (the discretization accuracy), or to the
numerical mapping and establishment of order of accuracy.  These additional errors arise
from the behavior of the numerical scheme itself.

The foundation for the discrete math approach to solving PDEs numerically is
based on an equivalence theorem (Oberkampf and Blottner, 1998) that says:  1) the
difference equations are equivalent to the differential equations (guaranteeing
consistency); and 2) the solution remains bounded as it is solved iteratively over the
space and time discretizations, Δ (guaranteeing stability).  The problem for the PDEs of
fluid dynamics and of glacier modeling is that this theorem only provides necessary and
sufficient conditions for convergence for linear PDEs.  For nonlinear problems,
consistency and stability are only necessary conditions (not sufficient) that the numerical
solution will converge to the continuum solution in the limit of infinitesimal Δ.  Hence,
the numerical solution may oscillate, diverge, or only converge slowly and perhaps to an
alternate solution or spurious steady state.  Hindmarsh and Payne (1996) introduce the
use of iterated maps as a way of following the evolution of the numerical solution so as to
understand its reasons for oscillations or spurious convergences.  So, in terms of practical
equivalence, how the difference equations are written and solved can determine what
solution flow field is obtained.  This behavior is especially apparent in either over- or
under-specification of the discretized boundary conditions, but it also has to do with the
residual accuracy of the calculation -- sometimes thought of as the speed of iteration to an
acceptable convergence.  However, Roache (1997, 1998) makes the point that grid
generation errors or the construction of bad grids will add to the size of the discretization
error, but they do not add new terms to the error analysis.  So as the discretization
improves, all errors that are ordered in Δ will go to zero, and hence an error taxonomy
should not include both grid and discretization errors as separate categories.  This is
because one cannot take the limit of infinite order (equivalent to zero truncation error)
without also taking the limit over an infinite number of grid points.  Yet in practice, the
code developers may include iterative tuning or relaxation parameters, that are problem
dependent, to speed iterative convergence, and this may contaminate the actual grid
convergence (discretization accuracy) results.
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Equivalent sources of error can arise from the discretization of the auxiliary
relations and the boundary conditions.  If the auxiliary equations are linear algebraic
expressions, the formal error is equivalent to the machine round-off error.  But since
many of the auxiliary relations for our PDEs are nonlinear expressions, then some
iterative technique is required for their solution and coupling to the momentum equations.
Any errors that arise in any iterative step that is not fully converged will propagate
through the solution process.  In glacier modeling, such errors might arise when modeling
equilibrium chemistry at the glacier bed, or transport and deformation of substrate
materials.  Many errors can be reduced by good interpolation schemes, but one needs to
know the required accuracies of the problem in order to impose interpolations that do not
induce uncertainties.  In particular, the errors in the approximate representation of the
properties and features being studied need to be on the same order as the errors
introduced by the approximation techniques for interpolation, or else the numerical model
cannot resolve the features.  In CFD, the turbulence models used must be appropriate for
the conditions and flight configurations being simulated.  In glacier modeling, an
auxiliary model of preferred fabric orientation that might enhance flow to surge status
may not be appropriate as an auxiliary model, even if physically accurate, due to the
disparity between scale of resolution of the flow model to ice fabric scales.  Rather, a
model would need to be created that mapped changes in fabric to changes in strain-
softening in the effective viscosity.  This 3D viscosity model would act as a proxy for
material nonlinearities, coupling fabric orientation and stress gradients, and it would
operate in the momentum balance equations as an auxiliary relation.

The discretized boundary conditions must provide consistent information for the
solution of the discretized PDEs.  According to Oberkampf and Blottner (1998), the
balance between over- and under-specification of knowledge on the boundaries of the
finite-difference model is difficult to obtain and implement.  This same balance of
information is more easily specified in the original PDEs.  Recall that over-specification
of discrete BCs can cause divergence in the numerical scheme, and under-specification
can cause lack of convergence, solution wandering, or convergence to alternate steady
states depending on grid sizes, features to be resolved, and relaxation parameters used.
They speculate that this additional difficulty of matching BCs in the discrete case is due
to the fact that the particular differencing scheme and the grid size determines the degree
of coupling of the BCs to the interior flow equations.  Conversely, in continuum math,
the PDEs are always fully coupled to the boundaries.  Thus sources of error and
uncertainties need to be monitored and explored to maintain credibility of the model
verification results.  Only a rigorous grid refinement study will establish the overall order
and accuracy of the complete numerical scheme (equations, auxiliary relations, and BCs)
and will provide confidence in matching accuracy and spatial differencing scales.
(NOTE:  Grid convergence methods are discussed later in the Procedures Section.)

Additional representation complications, and hence sources of numerical error
and uncertainty, arise from the cases of flux BCs and the use of unsteady or moving BCs.
As mentioned previously, flux BCs are difficult to select and implement in the continuum
PDE case, and in the discrete case these problems remain even for steady laminar flow.
Oberkampf and Blottner (1998) site CFD cases wherein there is clash between numerical
solutions and experimental data.  When comparing the analytic limit of  Δ —> 0  for the
inflow/outflow BCs, these solutions were found to be incompatible with the original
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PDEs (Oberkampf and Blottner, 1998, p.693).  For cases of unsteady or moving BCs, the
CFD example is one of analysis of reacting flows.  For the glacier analog, instead of a
specific BC for basal conditions, we might envision process models as consistency
conditions that are used to describe entrainment of till and general bed deformation.
Such complications are realistic, but are difficult to model and match to the glacier flow
field.  One way to gain confidence in these processes is to numerically experiment with
the sensitivity of the flow to variations in these process models.  One could then
eventually extract a representative moving boundary relation; or one might use the ice
“ceiling” as a BC for a basal deformation flow model and thus circumvent moving
boundaries.

Finally, consider Roache’s (1998) error categories that pertain to code use,
namely problem set-up, coding of benchmark cases, and interpretation of results.  These
all refer to errors or uncertainties in the final discrete solution and results comparisons.  It
is important to note that to minimize solution errors, the magnitude of change tolerated
on the dependent variables during iterations depends on the time step limit (Hindmarsh
and Payne, 1996; Oberkampf and Blottner, 1998) as well as on the current convergence
rate.  One wants the iterative convergence error (that is, the residual accuracy) to be
smaller than the temporal discretization error before going to the next time step.  Hence
one needs to compute the residual for each equation at each grid point, and let this
residual approach some bounded value for all difference equations at all grid points.  This
will guarantee control of the discrete solution errors, and is necessary for stability.  It is
not always sufficient to merely iterate a solution until there are small changes in the
dependent variables; non-movement of dependent variables does not guarantee small
solution error.  Solution strategies and their specific implementations must be explored to
gain appreciation for the variability of discretization schemes and system performance.
This knowledge lends credibility to target solution results.

PROCEDURES FOR VALIDATION AND VERIFICATION

The strategy for carrying out validation and verification processes is iterative.
The outcome of model validation is meaningless without identifying and understanding
the effects of numerical errors and their propagation on the model.  This would say that
verification should precede validation.  But part of validation is establishing the correct
problem statement, the best representation for that problem in various sets of continuum
PDEs and their boundary conditions, and an assignment of parameter values or ranges.
This needs to be done before the discretized PDEs are formulated, the numerical scheme
and gridding is selected, the code is calibrated across test cases in numerical experiments,
and the scheme is verified.  Thus, the process is iterative, and refinement of fidelity of
both the physics and its numerical representation must proceed step-wise.

This section first examines validation methods that establish the context and
content of problem statements.  It is followed by presentation of some rigorous numerical
methods, that have been developed and used for incompressible Navier-Stokes and
related PDEs, and that can be used to verify the numerical accuracy and limits of such
discretized codes.  In this sense, verification is the process of doing experiments on the
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numerical schemes themselves, and this is different from the process of benchmarking
the codes to test cases that represent a certain fidelity of reality.

Model Validation Procedures
Rizzi and Vos (1998) outline a procedure for validation, and it is very similar to

the goals and intents of the EISMINT (European Ice Sheet Modeling Initiative)
experiments.  Validation is also a step-wise process, and between the steps of increasing
code fidelity lie opportunities for code and calculation verification.  In the CFD world, as
in the glacier modeling community, the validation process is carried out by comparing
representative simulations with trustworthy detailed experimental measurements, and this
is done with increasing maturity of the PDE model and its numerical code.

At the development stage, research codes that are assumed to accurately model
the continuum PDEs are validated by comparison with benchmark experimental test
cases of relatively simple flows, on simple geometric configurations, and include a single
dominant flow feature.  These experiment test cases are wind tunnel or flight simulation
experiments for aerospace CFD, but in glaciology the benchmark cases are derived
computational models with their pedigree in extensive laboratory and field data or in
previously verified simple flow models.

At the second stage, the physics and code are extended to include at least two
flow features or phenomena that interact with each other.  This analysis is done in the
CFD case over a component of an aerodynamic system (such as interacting shock wave
and boundary layer over a simple wing).  In the glacier modeling case, this stage is
similar to the pre-Level II EISMINT model intercomparison experiments that contributed
to the 1997 Grindlewald Meeting (Payne, 1997).  At that phase, several aspects of ice
sheet model phenomena that were not addressed in the EISMINT-1 needed exploration,
even though geometry still remained simplified.  These several aspects included:

1. full-coupling of temperature evolution with the flow through the ice rheology;
2. temperature and form response times to step changes in the BC;
3. divide migration rates in response to accumulation;
4. response to simple, temperature-dependent sliding laws; and
5. response to topographic variation.

Like the CFD case, these additional experiments also represent two interacting flow
phenomena, and are still carried out over simplified geometry.

Finally, the mature stage of validation, one that is anticipated in later EISMINT
model intercomparison exercises, is detailed by Rizzi and Vos (1998) as using full
production code, relying on comparison with complete systems configuration, focussed
on global performance data of the computational model.  In the EISMINT case, this
would match numerical models against derived Greenland and Antarctic representations
and geometries.  The test cases for the mature code use full system models, not just
components, and they involve complex flows with multiple interacting features that
represent a specific fidelity and scale of the actual physics.

To carry out these validation efforts, a degree of model calibration and tuning is
required.  Although calibration is intended to tune the numerical code with a particular
fluid dynamics model in order to improve its predictive capacity of globally integrated
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(and measurable) quantities, calibration in fact leads to a loss of generality in the model.
Hence, calibration must be carried out over several test cases that cover both presence
and absence of the various physical phenomena of interest in order to bound the effects.
This defines a restricted class of flow problems and features to which the model and code
is sensitive, and is hence part of validation.

Code Verification Procedures
At this point, it becomes necessary to intertwine verification steps with the model

validation process, for as we have seen, verification of code for one problem does not
guarantee the same level of accuracy for other problems.  Similarly, the simulation is
only valid for a certain class of problems in that agreement of a calibrated model with
reality may be only fortuitous when it is used under conditions different from the original
calibration set.  Grid convergence testing probably needs to be carried out whenever the
problem statement is substantially enhanced to establish or maintain equivalent solution
accuracy.  This process is almost never done due to the expense of either setting up
multiple new grids and running the code while monitoring errors, or running multiple
variations of the code across the same grid.  However, each instance of verification
establishes the level of accuracy and sensitivity of solution results and parameters in the
numerical scheme.  If the code is new and increasingly complicated, and there is limited
experience with it, then it is worth re-verifying that it numerically converges to
previously verified versions of code, or to available, manufactured exact solutions.

The sensitivity of the simulation to discretization error is established through
convergence to known solutions or through grid refinement studies; for example, by
comparing several simulations of the same problem across different grid resolutions.  The
iterative process is:  evaluation of model uncertainty using sensitivity analysis; then
validation via comparison with measurements or test case models; next code verification;
then extensions of the model; and back to rigorous verification of the new set of
equations.  As one progresses, it is important to demonstrate the degree to which the
previously calibrated models and their uncertainties are transferable to the new problem
of interest.  Below are two methods for verification of codes:  one using recovery of a
manufactured analytic solution that exercises all derivatives in the code, and one that
bounds grid resolution errors through refinement studies.

Oberkampf and Blottner (1998) describe a method for verifying numerical codes
using analytic solutions.  Their discussion is a summary of an extensive paper by
Steinberg and Roache (1985) that uses MACSYMA symbolic manipulation for the
analytic expansion of derivatives as needed in this procedure.  Roache (1994, 1997, 1998)
further extends and summarizes the method as part of the uncertainty analysis for CFD
codes, and he includes grid refinement as part of the method.  The appeal of this
procedure arises when one understands that to verify a code, one does not have to be
evaluating convergence to a physically realistic solution.  One only has to be sure that
all derivatives in the code are exercised, including cross-derivative terms, and that all
iterations go to full convergence.

If one has an analytic solution to a PDE, then showing that the numerical model
converges to this solution constitutes a verification of that code.  Generally, in CFD and
in glacier modeling, analytic solutions are not available for the PDEs of interest.  Thus,
the Steinberg and Roache process is to construct one.  First, they choose a specific form
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of a solution function, similar to the class of problems treated by the code, and assume it
satisfies the PDE.  Inserting this solution form into the PDE requires expansion of all the
derivatives analytically.  Simplify the equation, and because the assumed solution does
not exactly satisfy the PDE, there will be inequalities of terms between each side of the
equation.  Now group all terms resulting from this inequality into a forcing function term,
Q(x, y, z, t), and add this to the PDE as a source term.  The solution will now satisfy the
PDE exactly and is an analytic, albeit not necessarily physically realistic, solution.  Next
the BCs for this PDE experiment can either be Dirichlet conditions, specifying the new
solution function on the boundary, or they can be Neumann or mixed conditions derived
from the assumed solution function.  The calculated source term, Q, and the new BCs
must now be programmed into the numerical scheme.  The numerical code is then run to
convergence, and the converged solution is mapped against the manufactured analytic
solution for agreement.  If the agreement is acceptable, then a substantial number of
numerical aspects of the code have been verified.  These aspects include the numerical
method and the spatial differencing scheme; the spatial transformation technique used in
the grid generation; the coordinate transformation used for exercising all terms in the
code (discussed below); the grid spacing technique; and the coding correctness and the
general solution procedure.

Roache (1998) extends this method to include a grid refinement study, and in
doing so also verifies the order of the observed discretization (possibly different from the
theoretical order anticipated).  The grid refinement study is described below; it shows that
systematic truncation error convergence is monitored during several runs of the code over
progressively refined grids.  Thorough iterative convergence is required.  As a metric, the
p-th order of error,  Ep = error  / Δp  (where ‘error’ stands for truncation error, and Δ is
the grid spacing), should remain constant during grid refinement if the code is doing what
is expected of it.  No drift in this numerical error during refinement verifies that the
numerical method is accurate to order p over all points for all derivatives.

One issue that arises is guaranteeing that the chosen solution function exercises all
derivatives in the numerical experiment.  Generally, a coordinate transformation is
chosen to ensure this fact.  Steinberg and Roache (1985, p. 274-277) select the function
as follows.  Assign coordinates  xi  = (x1, x2, x3)  to be

xi  = ξs + ξi  + tanh (di ξ1 ξ2 ξ3)  ,      i = 1, 2, 3

where  ξi  =  (ξ1, ξ2, ξ3) , with ξi values being linear from 0 to 1 and indexed and scaled
to the original finite difference approximation.   ξs represents a zero point shift in
coordinate to avoid singularities at the origin.  Here di is a control parameter that adjusts
the severity of coordinate stretching.  If di = 0, then there is no stretching in xi.  For non-
zero di, the tanh function allows non-zero values for all derivatives in the PDE.  Steinberg
and Roache (1985) note that errors will show up more readily when all coefficients of the
PDE operator are of the same order.  If this is not the case, it is sufficient to scale the
coefficients to help identify the source of the truncation error during grid refinements.

15

Sue Blumenberg
Rectangle




- 16 -

Later this solution can be used as guidance for problems wherein the operator coefficients
are of disparate size.

Grid Refinement Procedures
Inadequate grid resolution can be a major source of overall numerical solution

error.  For finite difference schemes, the spatial discretization error can be estimated
using the Richardson iterated extrapolation method.  The method requires at least two
numerical solutions with different grid sizes for the discretization error to be estimated.
Usually, the fine grid solution is calculated over double the number of grid points in each
direction of the coarse grid.  Roache (1994) developed a grid convergence index based on
the Richardson method that basically ratios an error estimate obtained on grids that are
not doubles (or halves) of each other, and converts the estimate to an equivalent grid
doubling estimate.  Richardson’s iterated extrapolation, or deferred approach to the limit,
(see, for example, Oberkampf and Blottner, 1998; or Roache, 1998) says that for series
solutions

fexact  =  fdiscrete  +  αΔp  +  (higher-order terms in Δ)

where p is the assumed-known order of accuracy of the numerical scheme.  The
coefficient  α  is a constant for a given solution and does not depend on any particular
discretization.  Its value is also derived in the refinement process.  Two numerical
solutions over different grids are computed, and these are combined to compute a new
estimate on the exact solution and a measure of the discretization error.  Oberkampf and
Blottner (1998) point out that in practice, more than two refined solutions will be
required.  First, the global accuracy of the method over solutions and integrated or
differentiated solution functionals (like integrated discharge, or differentiated velocities
yielding strain-rate fields) can be degraded due to inaccuracies or errors in
implementation.  These errors may not show up in the first refinement or may have
cancelled out until the refinement shifts resolution scale.  Second, the higher-order terms
in the extrapolation are not negligible at first because insufficient grid resolution was
undoubtedly used on the first few solution attempts.  Refinements must continue until the
computed grid convergence rate matches the known order of accuracy of the code.  At
that point, the method can be used to estimate the error between  fexact  and the discrete
fine-grid solution (Roache, 1998).

Richardson extrapolation is best used not to obtain the correct discrete solution,
but to obtain an estimate of error by differencing the solutions derived.  Accurate
application of the method for error estimation, with known order of accuracy, p, requires
that the observed convergence rate equals the formal convergence rate.  When this
happens, the leading order truncation error term in the error series is known to dominate
the error, so the estimate is accurate.  Note, however, that nonlinear features of the
equations may contaminate grid convergence, so if excessive refinement seems required
to match convergence rates, it may indicate other problems.

If the goal is to verify the actual order of accuracy for a problem rather than using
a known p to estimate error, then a variation of this method suffices.  The actual observed
order may be different from the predicted order based on the scheme because the
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observed order of convergence depends on achieving the asymptotic range of the solution
at small residuals.  The observed order may also be different from the order previously
verified in a test case.  Roache (1998) shows that observed order p can be extracted from
operations with three grid-refined solutions, and this p can be compared to the assumed
theoretical order.  Let f1 represent a fine-grid solution calculated over grid spacing h1,
and let f3 represent a coarse grid solution over spacing h3, with f2 and h2 being
intermediate to these.  Let ‘r’ be the grid refinement ratio defined as  r = (h2 / h1 ) > 1  or
r = (h3 / h2 ) > 1 , assumed constant but not necessarily r = 2.  Then from combining
Richardson extrapolation equations for each solution, there arises the relation:

p = ln {(f3-f2) / (f2-f1)} / ln (r)

where p is the observed order.  If r is not constant over these grid sets, then a more
general equation must be solved for  p  as follows.  Let ε23 and ε12 represent the solution
differences (f3-f2) and (f2-f1) respectively, and let r23 and r12 be the respective grid
refinement ratios.  Then the general equation to be solved for  p  is:

ε23 / (r23
p - 1)   =  r12

p  {  ε12 / (r12
p - 1) }

For r not constant, this equation is transcendental in p and Newton-Raphson techniques
(or similar) can be used to extract the order, p.

One final point of interest:  obtaining estimates for discretization error can lead to
methods of examining error propagation.  Instead of examining leading order terms in the
truncation error, one can approach the problem through spectral methods.  An overall
solution discretization error says nothing about what grid locations and clusterings, or
what parts of the solution, are contributing most to the errors.  For series solutions, an
energy spectrum of the solution and solution error can be created.  These include
solutions that can be decomposed into harmonic components, that can be represented by
recursion relations, by discrete wavelets, or represented by non-periodic spectral methods
such as Maximum Entropy Methods.  For localizing an error estimate, short data records
must be used, and the Maximum Entropy Methods (Ulrych, 1972; McDonough, 1974;
Press and others, 1992) are especially useful in assessing the frequency spectra of short
data records.  The method is simply autoregressive spectral analysis carried out in the
space dimensions rather than in time.  The spectrum indicates the amount of energy
partitioned in a solution wavenumber (inverse wavelength).  The local error associated
with every spatial discretization scheme can be modeled as the inner product of the
accuracy at that location times the energy spectrum of the solution at that location.  If the
gridding and analysis is done so that regions of interest can be isolated and local solution
results can be extracted there, then one can examine how the energy in the solution falls
off at higher frequencies.  The total local error in the discrete approximation is then the
integral over all wavenumbers of the spatial discretization scheme’s error, e δ(ω), at
location δ times the energy distribution, E, of the discrete solution, fd(ω), as:

Local Error  =    ∫ e δ(ω) E(fd(ω)) dω
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This gives the size of the error where the solution shows the most spectral energy.
Figure 1 is a schematic representation of this situation, and shows graphically an
example discretization error (d.e.) from this integral.

Figure 1. Schematic representation of solution energy E vs. wave number ω

The plot is solution energy E vs. wavenumber ω .  The normal growth of error is from
low frequency (small wavenumber or long spectral wavelength) into the high frequencies.
If the energy falls off in a well-behaved manner as in curve ‘a’, then there is very little
intersection of the solution energy curve with the error growth.  However, if the solution
energy falls off more gradually as in curve ‘b’, then high frequencies are being polluted,
and there is much more discretization error (‘d.e.’) in the solution.  By evaluating the
solution quality and accuracy in small block regions decomposed from original multi-
block grids, the contribution of discretization error in those regions can be evaluated
independently.  If the source of error is upstream of a feature of interest in the model,
then this error stands a high chance of propagating or convecting into that region and
being enhanced.  Thus, formal localization of error sources and growth allows
exploration of how the solution is evolving, and how the spatial resolution may need to
be altered to capture the physics of interest.  It may be possible to estimate downstream
propagation of error without actually formally solving an error equation or an error
convection equation.

E

ω

a b error

d.e.
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SOLUTION QUALITY IN GLACIER MODELING

Consider now the combination of verification, validation, and error analysis
methods to assess and guarantee solution quality.  Solution quality means solution
accuracy; to control solution quality, one must explore how to control or assure solution
accuracy.  In this section, a series of publications over the last decade in the glaciological
literature are examined not for their results, but for their methods.  These representative
example methods are being used to successfully maintain solution quality, and these
papers are offered as models for quality benchmarking, model calibration, validation
studies, verification studies, or error analysis.

The glaciology community has recently published a variety of results from
extensive numerical experimentation and benchmarking of models and codes for the ice
sheet equation as part of the European Ice Sheet Modeling Initiative (EISMINT)
(Huybrechts and others, 1996).  Fifteen ice sheet models were submitted to the model
intercomparison tests at the Level I exercise.  The exercise published the numerical grid
and model constants and parameters on which the participants were to exercise their
respective codes.  Boundary conditions were established for both a fixed margin
experiment and a moving margin experiment.  Both steady-state and time-dependent
behavior was evaluated, and simulations were to be run over an evolution time-period of
2 x 105 years.  The submitted models had different ways of calculating the ice fluxes, and
the discretization schemes were different, although two broad schemes were recognized.
All teams adopted a staggered gridding scheme due to the known problem of unstable
performance of non-staggered grids in representing diffusion effects in the flux
calculations.  An exact analytic solution was available for the 2D experiments, and thus
the various broad categories of schemes could be analyzed for estimates of truncation
error in the solution, and for discretization error caused by the grid/mesh interval.  These
results can provide guidance for accuracy in the 3D models.  A consensus was reached
concerning resulting flow and temperature fields for each of the variety of experiments.
This consensus provides reference solutions against which future modeling codes can be
assessed for accuracy and consistency.  Note that the code verification and accuracy was
left to each modeling group, apart from comparison of results to the 2D analytic solution
and the consensus achieved through the experiments.  Any large divergence in results
from the consensus was considered to be caused by numerical inaccuracies.  Running the
experiments under fixed and moving margins with steady and sinusoidal climate
boundary conditions provides a calibration for the participating models.  Model
validation is not an explicit issue in these experiments because at Level I, the physics is
constrained to be rather simple, and only the numerical stability and accuracy of the
participating models is sought. Because most errors were controlled by the details of the
experiments, error analysis was used to explain variations between model results.

A second phase of the EISMINT experiments was also run, as discussed in Payne
(1997).  It was recognized that several aspects of ice sheet model phenomena had not
been addressed in the EISMINT-1 experiments, and additional trials would enhance the
calibration and performance of the submitted models.  These aspects included sets of two
interacting flow phenomena that could be explored over the same planar geometry of the
original experiments.  In addition to adding calibration and better model validation, these
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experiments help spawn new papers that used the EISMINT process as the source for
benchmark solutions against which to expand physical understanding.

Hindmarsh and Payne (1996) represent such a study in extrapolation of methods.
They examine three different discretization schemes for the ice sheet equation, and run
numerical experiments with these using different time-step schemes (marching and non-
linear iterations) to isolate the stability features of the methods.  Accuracy is determined
over various grid resolutions, and time-step limit bounds are developed for the schemes
to maintain accuracy.  Comparison is made for the accuracy of the various discretization
schemes with available analytic solutions in one dimension for flow law parameter n = 3,
and in two dimensions with n = 1.  This provides full verification of numerical accuracy
for models of that complexity.  Computational efficiency of various iterated and non-
iterated time-marching schemes is compared.  EISMINT 2D, n = 3, results are used for
carrying out extrapolation to more complex models.  The use of iterated maps as the
representation of the numerical solution is introduced and developed here, and these aid
in understanding and controlling uncertainty in model evolution.  The onset of numerical
instability is found to depend on the method of time-stepping, and a correction vector is
developed that represents the evolution of the equations in such a way that appropriately
small time steps can be selected without computational investment in extensive specific
experimentation.  A great part of the value of this paper is the way it specifically controls
the accuracy of the numerical experimentation, isolates causes of variability in solutions,
and compares several schemes in exploring solution quality.

Marshall and Clarke (1996) use a conventional three-dimensional finite-difference
model, and by employing coupling terms to model mass exchange, they examine sheet-
ice and stream-ice components in the same model without having to explicitly develop
ice stream physics.  Yet, ice stream physics can be explored by these methods.  Ice
streams are sub-grid at the current resolutions of gridding schemes for the ice sheet
equations.  The authors thus convert a complicated physics problem into a form that can
be modeled using well-proven codes.  They parameterize the creep exchange process
between sheet ice and stream ice, and they separately model stream ice fluxes by
subglacial bed deformation and de-coupled sliding at the ice-sediment interface.  The
areal activation of ice streams is controlled by basal conditions.  Sensitivity tests are run
on EISMINT benchmark configurations, and resulting thickness and velocity profiles are
derived and compared.  With that heritage, the results enhance the benchmark cases, and
the sensitivity analysis bounds the model uncertainty.  The mixture of steam ice and sheet
ice within the same model, without the need to specifically model sub-grid physics,
provides an excellent enhancement to existing models and their use.  The validation and
calibration of their models are ensured because of the detailed development of the
physics and the PDEs before application of the numerical scheme.  Assumptions and
constraints are explicitly identified, and the ramifications of such simplifications are
discussed providing conditions of applicability for their models.  Fairly simple mass
balance equations can be used numerically because of the extensive work in developing
mixture and exchange relations that define the problem statement.  The dynamic coupling
of the ice mixture is parameterized in such a way as to allow examination of effective
control, activation, and development of ice streams even in a full 3-dimensional flow
field. Finally, the exploration contained in the sensitivity tests demonstrates the range of
applicability of these methods for further enhancements.
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Hindmarsh (1997) explores the use of normal modes of eigenvalue problems,
derived from linearized versions of the ice sheet diffusion equation, to initialize models
and examine small scale changes in features and response-times.  In non-linear models,
accumulation rates and viscous properties must be parameterized and tuned in order to
calculate ice thicknesses.  Such tuning is not needed in linear models, and fluxes are
derived directly from balance relations.  With the increasing availability of highly
accurate digital elevation maps from satellite altimetry, actual ice sheet geometry can be
modeled rather than calculated.  Here, model validation arises from initializing the
numerical models using actual data, and carrying out perturbations about EISMINT
solutions.  The normal mode solutions are compared to similar normal mode analyses
derived from Antarctic digital elevation models, and balance flux results are computed
across varying grid scales.  The normal mode analysis permits resolution of small scale
features in Antarctic elevation models; in non-linear models, the small scale structure in
such data is relaxed out due to numerical instability.  The linear methods, although
having some identified shortcomings, allow modeling and examination of small scale
effects.  Code verification becomes essentially unnecessary because with the linearization
scheme Hindmarsh uses, grid-centered difference fluxes are computed via linear
equations and matrix inversions that do not require the verification methods of PDEs.
These results also extend the applicability of the EISMINT results, and can be used as
additional benchmark test cases.

The EISMINT benchmark test cases and their derived extensions work well for
models that assume ice sheet configurations and aspect ratios.  However, when one
intends to explore the behavior of valley glaciers or of ice sheets under conditions where
the approximations in the simple slab model break down, such as near the ice divide or in
ice streams, then new methods must be sought.  Some of these conditions were explored
in the Marshall and Clarke (1996) sensitivity studies on ice streams.  Additional methods
are now considered.  Models of stress and velocity fields in glaciers are analyzed in two
companion papers, one that examines finite difference schemes for higher-order glacier
models (Colinge and Blatter, 1998), and one that explores sliding and basal stress
distributions using the first model (Blatter and others, 1998).  In both papers, substantial
headway is made in applying numerical methods to improve grid resolution, and then
enhancing the representation of basal velocity and shear models with moving stress
concentrations within this framework.

Colinge and Blatter (1998) create several numerical schemes and evaluate their
stability for modeling 2D stress and velocity fields, including stress gradients, in glaciers.
In particular, the paper looks at the modeling of conditions wherein the usual
approximations of shallow-ice aspect ratio break down.  A scaling scheme allows the
development of a linear perturbation method on the governing equations.  The equations
are separated according to order of the small scaling parameter, and numerical methods
are examined on these sets of equations.  Distinction is drawn through numerical
experimentation on the efficiency, accuracy, and conditions of applicability for the
methods.  The equations are transformed so they can be written as a series of coupled,
first-order ordinary differential equations and one algebraic constraint.  This allows
application of the method of lines wherein discretization occurs in all directions except
one, and a shooting integration scheme is developed from the glacier bed to the surface.
This method requires iteration and correction.  Because of the kind of coupling in the
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governing equations, it is found that even for each discretized derivative of order p, the
overall scheme is of order p - 1.  Thus, the derivatives in the algebraic constraint must be
discretized to order p + 1 in order to maintain an overall scheme to order p.  Boundary
conditions at the base are set to be either no-slip or functionally related sliding velocity
and shear traction, with a tangency constraint between horizontal and vertical velocities
at the base.  Experiments are run on each condition.  Single shooting schemes are run for
both fixed-point iterations and non-linear Newton iterations, and the flexibility and
fidelity of each is compared.  Additional constraints are discovered between the form of
the surface tractions as a function of the respective basal tractions, and this function must
be infinitely differentiable to guarantee solution uniqueness.  For fixed-point methods, a
criterion is developed to ensure existence and uniqueness of the solution as well.  A
condition number is derived for the Newton iteration method, for both single- and
multiple-shooting schemes, which dictates the instability of the algorithm in situations
when there is high sensitivity to the initial values at the glacier bed.  These methods are
applied to mixed basal boundary conditions, prescribing both basal velocities and basal
shear tractions over regions of the bed.  Experiments with the method show the rise of
numerical instabilities and even-odd oscillations over two grid-cells.  Through refined
exploration, a non-symmetric discretization scheme is discovered that removes
oscillations while maintaining well-defined order.  The schemes are calibrated and
validated for the particular model of parallel-sided plane slab flow, and first- and second-
order solutions are derived and compared across a variety of grid point schemes.

Because the idea of shooting schemes is to learn corrections to the initial starting
conditions, this method is ripe for sensitivity analysis experimentation that controls
instability.  Verification is done here by examining the stability of the method and
convergence rates, and by evaluating stability criteria that dictate step size.  An
unrealistic solution arises in which second-order solution profiles show negative shear
stress in the interior of the sliding area, and the authors speculate that this is related to
small oscillations around zero-stress values over the order of two grid-cells, and believe it
to be numerically induced (Blatter and others, 1998, p.454-5).  Considering the degree of
customization that has been developed in this paper for specific discretization schemes, it
might be worthwhile to explore manufacturing an analytic solution against which to test
the authors’ numerical schemes, as advocated by the previously described methods of
Steinberg and Roache (1985) and Roache (1994, 1998).  The authors indicate that the
most serious limitation to their methods (for validation) is the lack of general knowledge
of spatial variations of basal velocities and coupled longitudinal stresses at the bed.
These conditions are, of course, the initial integration conditions of the model, and
sensitivity of results in these conditions has been previously mentioned.

In an effort to experiment on sensitivity of basal conditions, the companion paper
of Blatter and others (1998) uses the schemes developed in Colinge and Blatter (1998),
thereby becoming a validation exercise for the previous models and schemes.  Here,
numerical experiments are carried out to study the interaction between basal velocities
and the spatial distribution of shear stress distributions at several scales.  These
experiments yield the important result that the sliding phenomenon is not locally caused.
Experimenting with both sliding and mixed basal conditions, the authors show that for
spatially periodic sliding / non-sliding conditions, a distance of 5-10 times the ice
thickness is necessary before the average sliding velocity can be considered uncoupled
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between one period and the next.  Sliding areas are discovered to be responding to
conditions that are not local to the observed sliding area, and are in fact responding to
conditions within distances on the order of the width or substantial parts of the glacier
length.  Hence, the theory has provided important insight for interpretation of field data,
and the necessity of multiple taps to the glacier bed in order to understand local physics.
Multiple numerical experiments are run.  Because the average basal shear over the entire
bed remains invariant under changes in sliding patterns, this becomes a benchmark
metric.  If there is local reduction in basal shear traction, then the ice is sliding or the bed
is deforming.  Calibration of the models is carried out by computing the stress and
velocity fields over a 2D-geometry section of the Haut Glacier d’Arolla, and discovering
that the flow and stress patterns over realistic geometry are the same as for simpler slab
geometry.  Exact location of sliding cannot be predicted, only that it has occurred.  But
this calibration maps and establishes a range of applicability of the model.  Additional
experiments are run under cases of infinite effective width, such as with ice streams that
are wide compared to their thickness, or that flow within their own ice channels.  These
experiments help to isolate the effects of side drag compared to basal drag.  The series of
experiments in this paper challenges the previously held validity of using flow laws to
indirectly determine basal stress components.  Measurements of basal strain rates,
coupled with knowledge of the flow law, still do not approximate the basal drag well
because of non-locality; hence the flow laws alone should not be used to derive basal
shear tractions.  Small spatial scale variations can lead to rapid stress variations, and
perhaps migrations of these along large stress gradients.  The suite of numerical
experiments and sensitivity investigations provides credible validation and calibration of
the physical models being proposed.  The matching of the derived results against patterns
in actual valley glacier geometries lends credibility toward verification of the extensive
numerical codes developed in Colinge and Blatter (1998), even though this by itself does
not represent a formal verification process.

All of the above papers present excellent strategies for their analysis methods and
explanations of the detailed physics captured in the problem.  Where possible, codes are
verified through comparison with benchmark results or analytic solutions.  Where formal
verification has not been possible, extensive sensitivity studies have worked to
demonstrate the range of applicability of the numerical methods and the model
parameterizations.  Formal error analysis and explicit ramifications of assumptions have
been frequently included.  The sophisticated results justify the effort expended to
maintain solution quality and to yield understanding of complex flow physics in the
glacier environment.

As analysis becomes even more complicated and datasets become more diverse
and heterogeneous, it becomes increasingly important that the codes and methods be
controlled through a managed process of experimentation.  Validation and verification by
teams of researchers, each with access to others’ results and methods, will become more
necessary in order to control the expansion of information and refinements in flow
physics.  In the following section, a vision of an information architecture is presented that
would help unify and manage modeling explorations, and would help fuse field and
satellite data, supporting boundary condition development.  The system could also keep
track of the physical problems, scenarios, and the specific dependencies, limitations, and
applicabilities between discretization schemes and particular flow physics codes.
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THE INTEGRATED SCIENCE EXPLORATION ENVIRONMENT

Background
The above discussions point to the need for a software toolkit that helps guide

strategic experiments, both for modeling glacier flow physics, and for benchmarking
various verification, validation, and error analysis tests.  An Integrated Science
Exploration Environment (ISEE) is therefore proposed that would allow exploring
methods and managing sources of uncertainty in glacier modeling.  The details and
functionality of this Environment are described based on modifications of a system
developed during the past several years at NASA Ames to support aerospace CFD and
wind tunnel analysis.  The original system was created in concert with aerospace
companies who were using wind tunnels for testing and validating aircraft wing and wing
element re-designs for the purpose of improving the flight performance characteristics of
the original design.  First, wind tunnel test results were made available online during a
single test entry.  Then, multiple test entries were archived and compared.  Next, there
was a desire to have CFD results across the same configurations made available during
the wind tunnel tests, and to have the results of CFD exploration provide suggestions of
enhanced design configurations or changes in the geometry of the element model.  These
changes could then be rapidly manufactured as new physical models for testing.  Ames
personnel built an interactive infrastructure that launched a variety of CFD flow solver
codes across highly complicated wing/element geometries and grids, and organized the
resulting solution fluxes, forces, moments, and integrated parameters into a form that was
accessible for visualization and design refinement decisions.  This system was called the
Advanced Design Technologies Testbed (ADTT).  The ISEE advocated here parallels
some of the ADTT functionalities, and uses the experience from the ADTT development.
The accompanying diagram, Figure 2, describes the contents and interactions for such a
system as the ISEE.  The vision for such a system includes a variety of facilities, such as:

•  Launch analysis or flow simulation codes with access to convergence histories, and
link multiple codes together on same basin geometry;

•  Manage sources of uncertainty through verification, validation, and error analysis;
•  Study impacts of linking climatological, glacial, and basal process models at various

spatial and temporal scales;
•  Present and Compare data from multiple sources for single glaciers or ice sheets, or

for single data types across multiple glaciers, with multiple investigators online;
•  Visualize non-customary or alternative relations between data;
•  Explore variations in parameter space and locate sensitivities or stiffness of parametric

regions against perturbations;
•  Archive and Group similar datasets or derived results for intelligent cross-cutting

datamining and retrieval;
•  Deploy a series of common science process scenarios with advisory software for

tutorial purposes; and
•  Orchestrate resource or hazard assessment analysis based on current models and

relevant datasets.
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Figure 2   Schematic representation of a general framework for the ISEE, given as an
example for glacier modeling and ice sheet physics, showing contents of various datasets,
process models, and toolkits for launching scenarios and preconditions for physics codes
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Vision for the ISEE:  Glacier Physics
ISEE is envisioned as an information architecture that could integrate multiple

existing glacier flow models over simple bed geometries with boundary conditions and
auxiliary process models, in particular models for basal conditions.  These boundary
conditions would be derived from glacier datasets, from climate and precipitation
datasets, or from derived mass balance and basal conditions datasets that are encoded in a
relational database.  The process models that look at spatial discontinuities in stress,
velocity, temperature, and water pressure could be coded from published literature, and
would follow a benchmarking process similar to that presented in the EISMINT
experiments.  Data from field-work could also be included to support basal conditions
models.  A web-based user interface for ISEE should constrain problem set-up, launch
and unify these codes and models, and it should also compliment the analysis results with
visualization tools in which non-customary or alternative relations between archived
datasets and model results could be created online and explored.  Parameter space could
be navigated visually and interactively, and stiffness of parametric regions against
perturbations or variations could be explored to locate model and process sensitivity and
applicability boundaries, and hence regions of computational risk.

Significantly, this Exploration Environment is envisioned as a general tool for
exploring and managing sources of uncertainty in glacier modeling codes and methods,
and for supporting scientific numerical exploration and verification.  It could also support
the analysis for a model’s sensitivity to variation-of-parameters or alternative process
representations, for location of flow changes across converging geometries, or for
comparison of alternative till-deformation models coupled to flow models.  The
Environment is a structure, so it is not constrained to certain fixed-use scenarios.  But
likewise, the codes and models to be used must be scripted to allow insertion into the
structure, launching, manipulation, and monitoring of process flow.  The Environment
could be used in developing a computational experiment or exploratory methodology for
initializing, launching, and comparing codes and results using the supporting
visualization tools.  It could thereby support validation, calibration, benchmarking,
verification, and uncertainty analysis.  A user would develop a strategy, and this strategy
would drive the elements of the Environment.  Furthermore, if such a numerical
experiment-architecture were available, it would promote the publishing of error
evolution and analysis along with the computational results, enhancing credibility.

Implementing such strategies and scenarios with flexibility requires access to a
database system rather than merely a data directory structure.  For CFD, Rizzi and Vos
(1998) recommend a database structure that starts with a flow taxonomy rather than the
geometry-driven structures currently in use in CFD toolkits.  For ISEE, there needs to be
a hierarchical taxonomy of features and structures of the flow modules of interest.  The
features in the taxonomy are then populated with experimental data, field data, satellite
remote sensing data, or data and results from previously validated flow and process
computations.  Then representative benchmark cases could be defined for each flow
structure or model type, linking the data and models for indexing and compatibility.
These benchmark cases can then be used to construct and refine the database system.
The system would include data manipulation tools that could generate synthesis plots
from across models and heterogeneous data types.  A data-mining technology is
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warranted that accesses this taxonomy and model results, and then presents or displays
data for correlation or comparison on demand.  If the system were accessible over the
Internet, then the benchmark cases could be used by researchers anywhere using a web
browser to create comparative data plots, and to validate their codes or linked models
against the case metrics.  Knowledge of which physical models and auxiliary models give
the best predictions for flow behavior could be appended to the cases through metadata
structures.  Data exchange standards or full CORBA (Common Object Request Broker
Architecture) development would support a unified fidelity in data representation, and
this would need to precede implementation of the remote-access system.

The data should be allowed to evolve and be replaced, upgraded, refined, and
corrected.  But it would still need to be tied to the particular benchmark case or flow
structure as its base pedigree.  This would be accomplished through indexing on
metadata.  The metadata are descriptors of what is in a particular dataset or results file.
Instead of searching or retrieving directly from sets of heterogeneous data, the metadata
can be searched and retrieved based on key words, on a more complicated indexing that
includes context, or on models of the data structures and relations themselves.  Each of
these indexing structures should be cross-referenced.  Particular information retrieval
starts at the metadata level, and the relevant content for a particular question is
reorganized and presented.  Data used to need to be strictly formatted in advance in order
to be retrieved and presented on demand.  This is no longer necessary with current
manipulation tools and search agents.  Data can be reformatted by an agent so it can be
gathered, compared, and plotted on demand.  Such reformating includes versions of
extrapolation, interpolation, and re-registering methods, but of course such manipulation
can introduce errors and bias.

A feature that would be very useful in ISEE for exploration of multiple numerical
experiments would be to have the datasets and model results managed by software
agents in such a way that all archived data, from whatever source, could be selected and
used to initialize new modeling runs.  A software agent would pull out values and re-
populate the namelist or initializer of the flow solver.  The extraction by the search agent
would feed a record of actions taken, it would be driven by an overall external or encoded
experiment strategy, and so these actions would become a process record of the
experiment flow.  Thus, the database system and its agents would become an integral part
of the experiment flow:  strategy initialization; problem set-up and initialization; flow
solver launch; post-processing and archiving results; visualization and analysis (perhaps
asynchronously during a run); and, finally, refinement, re-definition, and re-start of a
similar or new problem.  Of course, the database system could remain fully functional
without being directly tied into the flow solvers or other analysis codes, and it could be
accessed entirely standalone by the users.

An additional use for the ISEE could include, for example, exploration of various
approximations in related basal process models, and discovery of which approximations
are sufficient for resolution of a certain feature or process; or what is the appropriate level
of fidelity and sensitivity of the information to ensure such resolution.  A strategy might
be to compare and contrast various types of bed conditions, extracting stress, velocity,
and temperature data from current models or datasets.  The goal would be to create proxy
representations of the detailed models that would be sufficient for certain flow problems
or validation exercises.  For example, under what conditions would a boundary layer
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model suffice over a full basal process model, and for which problems is the full model
required versus simply a boundary condition?  Are the test cases consistently better or
worse than simpler models that use mean quantities?

Once verification of models moves from EISMINT’s Level I (Huybrechts and
others, 1996), wherein modeled processes and parameters are fixed, to Level II, wherein
individual models are run, including whatever processes are considered important along
with the modeler’s preferred values of parameters, there is substantial risk of moving out
of the range of applicability of various models against the more complicated flow
situations being simulated.  The ISEE should help understand and control risk through
managing consistent numerical experiments; it would also enhance uncertainty
management by aiding in the recognition of sources of numerical error during
convergence histories, or causes of non-physical solutions due to mismatched
applicability in models.  The simpler models have analytic solutions for verification.  As
problems become more complex, analytic solutions will not be available.  Currently, the
more complicated models and linked processes have to rely on constructed solutions for
verification, on comparison with previously verified and validated solutions, and on
consensus physics as targets for validation.  Risk, decision, and uncertainty management
tools are continuing to be developed that can support a more unified approach to solution
quality.

The ISEE could also be used for direct error evolution and analysis experiments
both through tracking of features and their changes as solutions evolve, and between
alternate representations of solutions.  Strategies to explore impacts and propagation of
errors must be developed whereby a series of code variations are launched.  Since errors
start as local features, and may convect downstream in the flow field, a visualization
capability that created a “cone” of error flow, and an assumed Gaussian error growth
distribution within this cone, could be modeled as an estimate for later model
interpretation.  In addition, such an error model could be compared with results derived
from field data that was stored in the database.  This experiment would also help establish
whether uncertainties associated with calibrated models are transferring (or are even
transferable) to other problems of interest.  The database agents would use interpolations
and extrapolation between archived datasets and model results to follow the error just as
if it were a flow feature.

Finally, the Integrated Science Exploration Environment would allow one to
explore and create new physics models and representations, even if they are believed to
be ill-founded at the outset.  There is a long and successful heritage in the development of
the appropriate governing equations for glacier and ice sheet models.  They incorporate
nonlinear constitutive relations and mathematically tractable assumptions such as the
shallow-ice approximation, absence of significant contribution from longitudinal stress
gradients, and of course the comparative insignificance of inertial terms in the
momentum balance due to relative adjustment time scales (Colinge and Blatter, 1998).  It
is not the Author’s intention to argue that glacier flow should not be fundamentally
Stokesian.  However, the scalings and simplifications that are commonly used and
grounded on the observed behavior of glaciers (at least in their quiescent phase) are
fundamentally unable to capture transient flow behavior or transition conditions between
quasi-steady states.  For climatic scale relaxation analysis, transition conditions are
irrelevant.  But fundamental changes and complicated flow structures seem to be
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occurring at active glacier beds on rather short time scales.  These processes are of
interest in and of themselves, but also as part of the dynamic system of the glacier and its
responses.  Exploration strategies can be developed to begin to evaluate this physics,
even if it does not appear mathematically tractable at first.  Maintaining a record of error
growth along with flow field computational results would allow one to look at what kind
of physics or math must be involved in accepting new hypotheses, and conversely what
groups of mechanisms turn out to fundamentally uncorrelated or insensitive to each other.

Consider a final example.  Suppose one wants to model the mechanisms of how
the ice flow transitions to its new state.  The time-dependent continuity model contains in
its heritage the understanding first formally articulated in several papers by Johannesson
and others (1989a, 1989b) and Raymond and others (1990) that the response time scale
for glaciers and ice sheets is that of the “volume time scale.”  This time scale is a measure
of the time for a glacier or ice sheet to reach a new equilibrium state following a climatic
or mass balance event.  Thus, computational time steps and non-dimensionalized time [t]
are regularly scaled according to ice thickness ‘H’ and accumulation rate ‘a’ to be of
order [H]/[a] (i.e., a representative glacier thickness [L] / a representative accumulation
rate [L/t] ) in most analysis models since the mid-1980s, whether for kinematic wave
studies or for long-term climatic adjustments.  This means that the shorter duration
transient behavior, on the scale of the “first awareness” in the glacier that a change is
occurring, should perhaps be scaled differently so that rapid, transient flow states may be
captured and modeled.  Steep, fast, wet glaciers may seldom be in steady state, and
longitudinal stress gradients as well as complicated basal processes may contribute
significantly to multiple flow states.  Hence, certain spatial scaling assumptions based on
aspect ratio that ignore stress gradients may break down.  The appropriate time scales for
these conditions may also be better represented by the short time scale  τs (Raymond and
others, 1990) which is similar to the 1/e folding time response of a system –- the time
between the climate event and the occurrence of first changes in the system (as opposed
to the time to fully relax to a new equilibrium state).  Thus, the equations of motion,
while still not including inertial terms, might be scaled differently in time from the
normal spatial scaling in order to capture such flow physics, and these types of analysis
procedures would need to be verified anew.  An experiment could be devised to use the
method of multiple time scales (Nayfeh, 1973; Kahn, 1990) to explore the ramifications
of such scalings, whether physically realistic or not, and see where they break down
numerically.  This way, the rationale behind the scalings can be teased out, and the
degree of inflexibility in modeling assumptions can be challenged.  The experiments may
fail due to errors induced by inappropriate time-steps in the numerical scheme that are
meant to guarantee stability.  But usually these time-steps are calibrated according to the
relaxation scale of the problem being modeled.  Numerical experiments using such
strategies are not meant to disrupt the main agreements in the glaciology community;
rather, they are meant to see how the failings of such experiments are tied back to better
understanding of the physics or numerical methods, and thus to better understand
uncertainty.

29

Sue Blumenberg
Rectangle



- 30 -

CONCLUSIONS

Extensive analysis of the sources of uncertainty in mathematical modeling and
numerical representations relevant to computational fluid dynamics and glacier modeling
has been presented.  Methods for code verification and model validation that are
becoming more frequently used in the aerospace CFD community are presented in this
paper in an effort to bridge these methods into the glaciological modeling community.
Although substantial differences exist between the physics of glacier and ice sheet flows
and that of aerodynamics, the numerical verification methods on the finite difference
schemes, boundary conditions, and auxiliary relations can be quite similar.  Model
validation strategies for PDEs consist of both using benchmark test cases containing
analytic solutions or known data results, and using calibration of models to establish
refined applicability conditions that constrain the uncertainty inherent in the
mathematical representations.  Sensitivity analyses are found to be necessary methods for
both research communities.  Specific analysis of the plausibility and ramifications of both
physical and numerical assumptions become not only important for credibility, but such
analysis also dictates model interpretation methods.

Several example papers from the recent glaciological literature have been
presented to demonstrate a suite of validation and verification methods and their
applications.  Some suggestions have been included to further refine these methods; but
on the whole, these papers are primarily presented as target examples of excellent
verification and validation efforts.  The physics of glacier flow and the detailed
conditions of the glacier beds are being modeled to ever increasing complexity.  As more
satellite and field data becomes available in heterogeneous forms to be used in model
initialization or results validation, it becomes imperative to carry out numerous numerical
experiments in an effort to bootstrap verification and validation methods into this more
refined analysis.  Error analysis needs to be published along with the computational
results.  To this end, an integrated information architecture, the ISEE, has been advocated
for use by glaciological researchers and numerical experiment designers.  ISEE is
presented and described as an architectural structure:  for managing verification and
validation experiments, for explorations in sources of uncertainty, and for unification of
heterogeneous datasets with computational flow physics models and their ancillary
equations.  The content of this architecture, and a variety of scenarios for its use, should
be developed as a part of normal scientific analysis in the growing field of glacier and ice
sheet dynamics, and their parameterization in global climate change models.
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